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Abstract
Objective
To investigate whether gray matter pathology above the level of injury, alongside white matter
changes, also contributes to sensorimotor impairments after spinal cord injury.

Methods
A 3T MRI protocol was acquired in 17 tetraplegic patients and 21 controls. A sagittal
T2-weighted sequence was used to characterize lesion severity. At the C2-3 level, a high-
resolution T2*-weighted sequence was used to assess cross-sectional areas of gray and white
matter, including their subcompartments; a diffusion-weighted sequence was used to compute
voxel-based diffusion indices. Regression models determined associations between lesion se-
verity and tissue-specific neurodegeneration and associations between the latter with neuro-
physiologic and clinical outcome.

Results
Neurodegeneration was evident within the dorsal and ventral horns and white matter above
the level of injury. Tract-specific neurodegeneration was associated with prolonged con-
duction of appropriate electrophysiologic recordings. Dorsal horn atrophy was associated
with sensory outcome, while ventral horn atrophy was associated with motor outcome.
White matter integrity of dorsal columns and corticospinal tracts was associated with daily-
life independence.

Conclusion
Our results suggest that, next to anterograde and retrograde degeneration of white matter
tracts, neuronal circuits within the spinal cord far above the level of injury undergo trans-
synaptic neurodegeneration, resulting in specific gray matter changes. Such improved un-
derstanding of tissue-specific cord pathology offers potential biomarkers with more efficient
targeting and monitoring of neuroregenerative (i.e., white matter) and neuroprotective
(i.e., gray matter) agents.
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Spinal cord injury (SCI) usually leads to sensorimotor dys-
function resulting from damage at the level of injury. How-
ever, a complex cascade of secondary neurodegenerative
processes occur across the spinal cord and brain.1 In chronic
SCI, cervical cord atrophy of up to 30% has been reported
above the level of injury; its magnitude relates to the degree of
clinical impairment.2 Recent improvements in diffusion-
weighted imaging and anatomic sequences with higher in-
plane resolution,3 combined with advanced postprocessing
techniques,4,5 now allow the assessment of gray and white
matter changes in the cervical spinal cord occurring after SCI.

Although white matter pathology within the spinal cord con-
tributes to sensorimotor impairments, the functional effects of
gray matter pathology above the level of injury are uncertain.
Improved understanding of tissue-specific cord pathology may
allow more efficient targeting and monitoring of neuro-
regenerative and neuroprotective agents. This study therefore
addresses to what extent cord atrophy above the level of injury
is driven by pathophysiologic processes occurring in gray and
white matter, whether lesion severity is associated with the
magnitude of neurodegeneration above the level of injury, and
whether the tissue-specific neurodegeneration is associated
with neurophysiologic and clinical outcome.

Using structural and diffusion MRI data, we assessed tissue-
specific cord pathology above the level of injury in patients with
chronic SCI compared to healthy controls. These measures
included the assessment of dorsal horn area (DHA) and ventral
horn area (VHA),6 diffusivity changes within the major spinal
pathways, and associations between lesion severity,7 tissue-
specific pathology, and neurophysiologic changes.

Methods
Standard protocol approvals, registrations,
and patient consents
Our study protocol was designed in accordance with the
Declaration of Helsinki and was approved by the local ethics
committee of Zurich (KEK-ZH-Nr. 2012-0343, PB_2016-
00623). All participants gave their written informed consent
before participation.

Participants
We recruited 17 patients with SCI (mean age 48.7 ± 14.1
years, 3 female patients) between November 2014 and May

2016 who were preciously admitted to the University Hos-
pital Balgrist (Zurich, Switzerland). Twenty-one healthy
controls (mean age 41.7 ± 11.3 years, 7 female controls) from
the local neighborhood served as a control dataset that was
acquired and used in a previous study.8

Inclusion criteria for patients with SCI were traumatic cervical
SCI, no other neurologic or mental disorders affecting clinical
outcome, age between 18 and 70 years, MRI compatible, and
no pregnancy.

Clinical assessments
All patients were examined with comprehensive clinical
protocols to assess neurologic and functional impairment.
These included the International Standards for Neuro-
logical Classification of Spinal Cord Injury protocol for
motor, light-touch, and pinprick score and completeness of
injury9; the Spinal Cord Independence Measure (SCIM)
to measure daily life independence10; the Graded Rede-
fined Assessment of Strength, Sensibility and Prehension
(GRASSP) for assessing upper limb function11; and the
Walking Index for Spinal Cord Injury (WISCI).12 All
patients completed the full protocol, except GRASSP score
was not available for 1 patient.

Neurophysiologic assessments
Contact heat evoked potentials (CHEPs) and somatosensory
evoked potentials (SSEPs) were acquired bilaterally in
patients at the dermatomes C4, C6, and C8 to measure the
integrity of the spinothalamic tract (i.e., CHEPs) and the
dorsal column (i.e., SSEPs). For the acquisition of CHEPs13

and SSEPs,14 the same protocols were applied as previously
described.

Contact heat evoked potentials
A contact heat stimulator (PATHWAY Pain & Sensory
Evaluation System, Medoc, Ramat Yishay, Israel) was used
to deliver contact heat stimuli from a baseline temperature
of 35°C to a peak temperature of 52°C with a heating rate of
70°C/s and a cooling rate of 40°C/s. For each dermatome,
we first assessed heat perception and pain thresholds within
2 consecutive trials. For the CHEPs recording, scalp re-
cording sites were prepared with Nuprep (D.O. Weaver &
Co, Aurora, CO) and alcohol. Three 9-mmAg/AgCl surface
disk electrodes were positioned according to the in-
ternational 10-20 system with the active electrode at the
Cz position and referenced to linked earlobes (A1–A2);

Glossary
AD = axonal diffusivity; CHEP = contact heat evoked potential; CI = confidence interval; DCA = dorsal column area; DHA =
dorsal horn area; DTI = diffusion tensor imaging; FA = fractional anisotropy; FOV = field of view; GMA = gray matter area;
GRASSP = Graded Redefined Assessment of Strength, Sensibility and Prehension; MD = mean diffusivity; RD = radial
diffusivity; SCA = spinal cord area; SCI = spinal cord injury; SCIM = Spinal Cord Independence Measure; SSEP =
somatosensory evoked potential; VHA = ventral horn area; WISCI = Walking Index for Spinal Cord Injury; WMA = white
matter area.
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impedances were kept <5 kΩ. Ten to 15 contact heat stimuli
were applied (interstimulus interval 8–12 seconds). Two
seconds after each stimulus, an audio cue appeared, and
patients rated their perceived intensity according to a nu-
meric rating scale. All signals were sampled from 100 mil-
liseconds before the trigger to 1,500 milliseconds after the
trigger at a sampling rate of 2,000 Hz with a preamplifier
(20,000× bandpass filter = 0.25–300 Hz; ALEA Solutions,
Switzerland). Data were recorded in a LabView-based
program (V1.43 CHEP; ALEA Solutions, Zurich, Switzer-
land) with a 100-millisecond period before the trigger and
1-second posttrigger period. Raw data were bandpass fil-
tered from 0.5 to 30 Hz.

Somatosensory evoked potentials
For dermatomal SSEPs, Key Point (Medtronic, Mississauga,
ON, Canada) was used to record and deliver electric stimu-
lation of 3 Hz. Stimuli were elicited by single 0.2-millisecond,
repetitive, square-wave electric stimulation. We first assessed
electric perception and pain thresholds for each dermatome
(not exceeding 40 mA) within 2 consecutive trials. For the
recording of SSEPs, surface gel electrodes (10 mm) were used
on each dermatome after the skin was prepared with Nuprep
(D.O. Weaver & Co) and alcohol. Disposable needle elec-
trodes (Spes Medica, Srl, Genova, Italy) were positioned
according to the international 10-20 system with the active
electrode positioned at the contralateral side for the stimu-
lated dermatome (C3-4) referenced to Fz; impedances were
kept <5 kΩ. The stimulation intensity was individually set as
3-fold electric perception threshold. Averages of 2 traces of
300 cortical responses were obtained for each dermatome.
Raw data were bandpass filtered from 2 to 2,000 Hz.

Neurophysiologic classification
We determined amplitudes and latencies of each dermatome
for each patient after averaging all single-trial waveforms
for CHEPs (i.e., N2P2, N2, P2) and SSEPs (i.e., N1P1,
N1, P1).

Furthermore, CHEPs and SSEPs were classified as normal
(onset latency ≤2 SDs from control dermatome recording),
pathologic (onset latency >2 SDs from control dermatome
recording), or absent (not recordable).14 The CHEPs pro-
tocol was acquired fully in 14 patients and partially in 1 pa-
tient. For SSEPs, 12 patients received the full protocol and 2
patients participated in part of the protocol.

Image acquisition
All imaging was performed on a clinical 3T SkyraFit scanner
(Siemens Healthcare, Erlangen, Germany) equipped with
a 16-channel radiofrequency receive-only head and neck
coil and a radiofrequency body transmit coil. A stiff neck
(Laerdal Medicals, Stavanger, Norway) was used in all
participants to minimize motion artifacts. As a result of
motion artifacts, 1 patient was excluded from macrostruc-
tural analysis, and 3 patients had to be excluded from mi-
crostructural analysis.

At the lesion epicenter, a sagittal T1-weighted (repetition
time 600 milliseconds, echo time 9.9 milliseconds, flip angle
150°, in-plane resolution 0.57 × 0.57 mm, slice thickness 3.3
mm), a sagittal T2-weighted (repetition time 3,500 milli-
seconds, echo time 84 milliseconds, flip angle 160°, in-plane
resolution 0.34 × 0.34 mm, slice thickness 2.75 mm), and an
axial T2-weighted image (repetition time 5,510 milliseconds,
echo time 93 milliseconds, flip angle 150°, in-plane resolution
0.5 × 0.5 mm, slice thickness 3.6 mm) were acquired to assess
the lesion size.

At the cervical cord above the level of injury (centered at C2-3),
5 volumes were acquired with a T2*-weighted 3-dimensional
multiecho gradient recall echo sequence (multiple echo
data image combination15) in the oblique axial plane
(i.e., perpendicular to the cord) to assess gray and white matter
atrophy. Each of the 5 volumes acquired consisted of 20 par-
titions with a resolution of 0.5 × 0.5 mm2 (field of view 192 ×
162 mm2, slice thickness 2.50 mm [10% gap], repetition time
44 milliseconds, echo time 19 milliseconds, flip angle 11°,
readout bandwidth 260 Hz/pixel). Each volume took 2.13
minutes to acquire. Application of zero-filling interpolation
doubled the nominal in-plane resolution (0.25 × 0.25 mm2).

At the identical level, a high-resolution diffusion tensor
imaging (DTI) dataset was acquired with a cardiac-gated
reduced-FOV single-shot spin-echo echo planar imaging
sequence with outer volume suppression16 to assess mi-
crostructural changes of the whole spinal cord. Four meas-
urements of 6 b = 0 (T2-weighted) and 30 b = 500 s/mm2

volumes were acquired, resulting in 144 images per partic-
ipant and a nominal acquisition time of 6.17 minutes. The
following parameters were applied: repetition time of
350 milliseconds; echo time of 71 milliseconds; slice
thickness of 5 mm (10% interslice gap); resolution of 0.76 ×
0.76 mm2; FOV of 133 × 30 mm2; phase oversampling of
50%; 5/8 partial-Fourier imaging in the phase-encoding
direction; cardiac trigger delay of 200 milliseconds; and
minimal time between triggers of 1,800 milliseconds. After
acquisition, zero-filling interpolation was used to double the
in-plane resolution (0.38 × 0.38 mm2).

Image processing

Lesion segmentation
With the use of the Jim 6.0 software (Xinapse Systems,
Aldwincle, UK), the lesion was segmented on the midsagittal
T2-weighted images, being visible as a high-signal-intensity
area within the spinal cord, as previously described.7 The
following parameters were quantified: midsagittal anterior-
posterior lesion width (equal to the maximal anterior-
posterior width of the lesion), midsagittal rostrocaudal
lesion length (equal to the maximal caudocranial extent of the
lesion), total midsagittal lesion area, and midsagittal thickness
of midsagittal ventral and dorsal tissue bridges at the widest
point of the lesion, which was summed up to the total amount
of midsagittal tissue bridges.
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Processing of high-resolution macrostructural data
above the level of injury
We used serial longitudinal registration17 embedded within
SPM12 to average the five 3-dimensional MEDIC volumes,
accounting for intraparticipant motion. To further increase
the signal-to-noise ratio, the average volume was resampled at
a double slice thickness. We then used the Jim 6.0 software to
measure cross-sectional spinal cord area (SCA) of 3 slices.
After the midpoint of the spinal cord was marked manually in
each slice, the SCA was calculated automatically with the
semiautomatic 3-dimensional active-surface model.18 Gray
matter area (GMA), dorsal column area (DCA), VHA (ap-
proximately lamina VI–IX), and DHA (approximately lamina
I–V) were extracted manually.6 White matter area (WMA)
was calculated by subtracting the GMA from the SCA. The
mean interobserver reliability and intraobserver reliability for
these measures were previously shown.8,16

Preprocessing and estimation of DTI data
All processing of the DTI data was carried out with a modified
version of the MatLab-based ACID toolbox optimized for the
spinal cord. First, we reduced the in-plane FOV to 24 ×
24 mm2 to exclude much of the non–spinal cord tissue in each
participant. Then, DTI volumes were slice-wise linearly reg-
istered with 3 df (translation in the frequency- and phase-
encoding direction, scaling in the phase-encoding direction)
to correct for intraparticipant motion and eddy-current arti-
facts.19 A diffusion tensor was fitted by use of a robust tensor
fitting algorithm that accounts for outlier volumes due to
motion and physiologic artifacts.20 The following DTI index
maps were extracted: fractional anisotropy (FA) and mean,
axial, and radial diffusivity (MD, AD, and RD).

These DTI index maps were then spatially normalized to
a self-constructed mean diffusivity template residing in the
spinal Montreal Neurological Institute space.21 To further
refine the accuracy of the registration, a manual slice-by-slice
registration (in-plane translation and scaling) was performed.
Finally, all DTI index maps were smoothed with a full width at
half-maximum gaussian kernel with 0.5 × 0.5 × 5 mm3.

Statistical analysis
Statistical analysis of all macrostructural MRI, neurophysio-
logic, and clinical data was performed with Stata13 (Stata-
Corp LP, College Station, TX). The mean age was not
statistically different between healthy controls and patients
(Mann-Whitney U test: z = −1.61, p = 0.10). All images were
visually inspected for artifacts, and the analysis was conducted
on 3 slices from each modality at the same level.

First, we assessed the morphometric differences in SCA,
GMA, WMA, DCA, VHA, and DHA between patients and
healthy controls by means of analysis of covariance, adjusted
for age. For microstructural differences between patients and
healthy controls, we used SPM12 for voxel-based analysis of
the different DTI indexes (FA, MD, AD, RD) by means of
analysis of covariance, adjusted for age. All statistical

parametric maps were initially thresholded with a cluster-
defining threshold of p < 0.01 (uncorrected) and clusters
surpassing a cluster threshold of p < 0.05 (family-wise error
corrected) are reported. Next, we used linear regression
analysis to investigate the relationship between changes at the
lesion site (midsagittal lesion area, length and width, and size
of midsagittal tissue bridges) and remote cord macrostruc-
tural and microstructural changes. We then determined
associations between macrostructural (SCA, GMA, WMA,
DCA, VHA, and DHA) and microstructural (DTI indexes
within lateral corticospinal tract, dorsal column, and spinal
lemniscus) parameters and tract-specific clinical measures
(motor, pinprick, and light-touch score, GRASSP, SCIM)
using linear regression models, adjusted for age and lesion
area. Finally, we investigated associations between macro-
structural and microstructural MRI indexes and neurophysi-
ologic outcome measures using linear regression models,
adjusted for age and lesion area. Note that only patients with
both recordable electrophysiologic potentials and available
MRI data entered this regression analysis, resulting in a total
number of 8 patients. For all microstructural associations, we
extracted mean values of DTI indexes within anatomic
regions of interest (lateral corticospinal tract, dorsal column,
and spinal lemniscus [containing spinothalamic and spinor-
eticular tracts]) as embedded in the Spinal Cord Toolbox.22

The level of significance was set to p < 0.05.

Results
Radiologic, clinical, and neurophysiologic
characteristics
Patients were scanned 6.7 ± 7.8 years after injury. An area of
hyperintense signal was visible on the T2-weighted sagittal
images in 16 patients (figure 1, A and B); 13 patients showed
hyperintensities in their dorsal column, covering on average
41.4 ± 21.0% of the whole dorsal column, and 2 patients
showed hyperintensities in the dorsolateral funiculus (e.g.,
corticospinal tract). The radiologic level of injury (hyperin-
tense T2-weighted signal) covered the vertebral level C3-5 in
1 patient, C3 in 1 patient, C4 in 2 patients, C4-5 in 1 patient,
C5 in 2 patients, C6 in 2 patients, C6-7 in 4 patients, and C7 in
2 patients. Two patients showed no signal alteration within
the cord. The average lesion area was 45.4 ± 66.6 mm2 with
a lesion length of 11.3 ± 9.4 mm and a lesion width of 4.3 ±
3.5 mm. In 2 patients, the lesion occupied the full cord area,
and no midsagittal tissue bridges could be identified. In the
remaining 15 patients, the midsagittal tissue bridges had an
average width of 2.9 ± 1.9 mm. No magnetic resonance ab-
normalities were identified in the control group.

Two patients were motor and sensory complete; 2 patients
were motor complete and sensory incomplete; and the
remaining 13 patients were motor and sensory incomplete.
The motor score (maximum 100) was 68.1 ± 30.4; the
light-touch score was (mean ± SD) 66.3 ± 32.7 (maximum
112); and the pinprick score (maximum 112) was 52.7 ±
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35.0. Manual dexterity was impaired as assessed by the
GRASSP score (149.8 ± 66.3 [maximum 232]), and
functional independence was impaired as assessed by the
SCIM score ([63.1 ± 31.3 [maximum. 100]). Eight patients
were able to walk independently (20 of 20 points in the
WISCI score); 2 patients were dependent on walking aids
(5 of 20 and 9 of 20 points in the WISCI score); and 7
patients were not able to walk (0 of 20 points). All data are
summarized in table 1.

All patients had neurophysiologic impairment of the spino-
thalamic tract, and a majority had impaired function of the
dorsal column below the level of lesion as assessed by CHEPs
and SSEPs, respectively. The mean ± SD perception/pain
thresholds and the amplitudes and latencies of the recorded
signals are shown in table 2.

Pathophysiologic changes in the cervical cord
above the level of injury
Compared to healthy controls, patients showed a decreased
SCA of 20.2% (p < 0.001, healthy controls 92.30 ± 8.49 mm2,
patients 73.71 ± 20.04 mm2). In patients, WMA was de-
creased by 16.9% (p = 0.001, healthy controls 75.34 ±
8.06 mm2, patients 62.64 ± 18.22 mm2), and GMA was
decreased by 30.0% (p < 0.001, healthy controls 16.96 ±
1.25 mm2, patients 11.93 ± 2.73 mm2). In the white matter,
DCA was decreased by 21.4% (p < 0.001, healthy controls
23.73 ± 2.99 mm2, patients 18.65 ± 4.76 mm2). Within the
gray matter, the bilateral VHA showed a 34.4% decrease in
patients compared to healthy controls (left: p < 0.001, healthy
controls 3.84 ± 0.29 mm2, patients 2.56 ± 0.62 mm2; right: p <
0.001, healthy controls 3.95 ± 0.40 mm2, patients 2.61 ±
0.58 mm2). In patients, the DHA was decreased bilaterally by

Figure 1 Macrostructural changes above the level of injury

Hyperintense regions most likely indicating (A) retrograde degeneration in the corticospinal tract and (B) anterograde degeneration in the dorsal column.
Arrows indicate the corresponding locations. (C) Differences between the cross-sectional whitematter area, cross-sectional graymatter area, cross-sectional
ventral horn area, and cross-sectional dorsal horn area in patients compared to healthy controls.
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33.4% (left: p < 0.001, healthy controls 3.63 ± 0.41 mm2,
patients 2.42 ± 0.66 mm2; right: p < 0.001, healthy controls
3.60 ± 0.51 mm2, patients 2.37 ± 0.66 mm2) (figure 1C), and
smaller DHA was associated with smaller DCA (p < 0.001,
R2 = 0.74, 95% confidence interval [CI] 2.21–4.28).

Voxel-based analysis of the cervical cord revealed a 16.6%
decrease in FA in the left dorsolateral funiculus (e.g., con-
taining spinothalamic and lateral corticospinal tracts, p =
0.003; localization [x, y, z] −4.2, −18.5, 26; z score 4.42;
cluster extent 154), 14.9% decrease in the right dorsolateral
funiculus (p = 0.025; localization [x, y, z] 6, −18.5, 37; z score
4.34; cluster extent 85), and 17.0% decrease in the posterior
funiculus (i.e., containing dorsal columns; p = 0.004; locali-
zation [x, y, z] 0.7, −22.3, 37; z score 3.80; cluster extent 145)
in patients compared to healthy controls. AD was also de-
creased in patients compared to healthy controls in the same
regions, namely by 12.8% in the left dorsolateral funiculus (p
= 0.014; localization [x, y, z] −3.1, −19.2, 26; z score 3.72;
cluster extent 58), 12.8% the right dorsolateral funiculus (p =
0.002; localization [x, y, z] 4.1, −18.8, 26; z score 4.70; cluster
extent 94), and 9.9% in the posterior funiculus (p = 0.020;
localization [x, y, z] 0.7, −19.2, 32; z score 3.69; cluster extent
52). RD increased by 31.8% in the dorsal column (p = 0.022;

localization [x, y, z]: 0.3, −20.7, 37; z score 3.47; cluster extent
70) and by 34.0% in the left dorsolateral funiculus (p = 0.023;
localization [x, y, z] −5, −19.2, 32; z score 3.22; cluster extent
69) in patients compared to healthy controls. MD was not
significantly different between patients and healthy controls
(figure 2).

Relationship between lesion severity and
remote tissue-specific neurodegeneration
Greater lesion area and length were associated with greater
SCA decrease above the level of injury (lesion area: p =
0.048, R2 = 0.25, 95% CI −3.64 to −0.23 1/mm3; lesion
length: p = 0.006, R2 = 0.42, 95% CI −0.55 to −0.11 1/mm2)
independently of age. The width of total midsagittal tissue
bridges was associated with less SCA decrease (p = 0.007,
R2 = 0.39, 95% CI 0.02–0.11 1/mm2). Greater lesion length
was associated with smaller GMA (p = 0.012, R2 = 0.40, 95%
CI −3.74 to −0.57 1/mm2), VHA (p = 0.039, R2 = 0.29, 95%
CI −8.33 to −0.25 1/mm2), and DHA (p = 0.004, R2 = 0.49,
95% CI −8.36 to −2.03 1/mm2), while midsagittal tissue
bridges were positively associated with GMA (p = 0.035,
R2 = 0.28, 95% CI 0.33–0.781/mm2) and DHA (p = 0.011,
R2 = 0.38, 95% CI 0.26–1.74 1/mm2) (figure 3A). Greater
lesion length and preserved midsagittal tissue bridges were

Table 1 Clinical and epidemiologic data for all patients included in the study

Patient Sex
Age,
y

Years
since
injury

Radiologic
level of
injury

AIS
grade

Neurologic
level of
injury

Motor
score

Light-
touch
score

Pinprick
score

SCIM
score

GRASSP
score

WISCI
score

1 Male 29 1.0 C4-5 A C4 14 16 13 22 21 0

2 Female 40 7.0 C3-5 A C4 7 71 12 19 43 0

3 Female 39 25.0 C6-7 B C5 30 32 34 28 125 0

4 Male 50 25.1 C6-7 B C7 46 62 26 63 188 5

5 Male 70 0.7 C5 C C2 46 48 34 19 71 0

6 Female 32 1.2 C6-7 C C6 44 33 24 23 92 20

7 Male 51 4.3 NS D C1 82 90 57 100 130 20

8 Male 56 5.6 C4 D C2 88 56 26 40 151 0

9 Male 43 13.1 C7 D C2 76 55 55 74 225 0

10 Male 60 0.3 C3 D C3 78 60 60 67 NA 9

11 Male 50 7.6 C4 D C3 84 10 10 97 136 20

12 Male 48 1.8 NS D C4 100 112 107 100 232 20

13 Female 63 0.3 C5 D C6 85 109 99 70 172 20

14 Male 69 0.2 C6 D C6 99 109 99 87 206 20

15 Male 67 12.6 C6-7 D C7 91 110 107 99 183 20

16 Male 27 4.7 C6 D C7 92 72 45 75 189 20

17 Male 33 3.0 C7 D C8 96 82 88 89 232 20

Abbreviations: AIS = American Spinal Injury Association Impairment Scale; GRASSP = Graded Redefined Assessment of Strength, Sensibility and Prehension;
NA = not available; NS = no signal alteration within myelon; SCIM = Spinal Cord Independence Measure; WISCI = Walking Index for Spinal Cord Injury.
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Table 2 Neurophysiologic data acquired in patients

C4 Dermatome C6 Dermatome C8 Dermatome

Left Right Left Right Left Right

CHEPs

Heat perception threshold, °C 43.97 ± 3.26 (15/15) 44.94 ± 4.20 (13/14) 45.18 ± 5.69 (11/15) 41.86 ± 4.36 (11/15) 47.08 ± 3.82 (10/14) 45.27 ± 4.28 (8/14)

Pain threshold, °C 50.12 ± 2.58 (11/15) 49.21 ± 3.53 (10/14) 49.56 ± 3.78 (6/15) 51.33 ± 2.75 (10/15) 49.50 ± 3.60 (4/14) 51.51 ± 2.12 (7/14)

Detectable signal 8/15 8/14 4/15 7/15 0/14 5/14

Pathologic signal 3/8 1/8 1/4 1/7 — 0/5

N2 latency, ms 409.12 ± 108.68 349.56 ± 78.45 357.38 ± 114.40 400.33 ± 63.15 — 352.88 ± 102.19

P2 latency, ms 506.63 ± 109.63 479.06 ± 90.75 461.38 ± 114.78 530.92 ± 45.90 — 466.13 ± 128.11

N2P2 amplitude, μV 39.28 ± 34.59 40.57 ± 48.16 33.21 ± 29.96 25.72 ± 20.05 — 30.45 ± 26.18

SSEPs

Electric perception threshold, mA 4.26 ± 2.87 (11/12) 3.30 ± 1.94 (12/12) 6.49 ± 10.15 (13/14) 8.18 ± 13.35 (12/14) 7.28 ± 7.75 (12/14) 5.59 ± 4.52 (11/14)

Pain threshold, mA 24.1 ± 12.02 (11/12) 26.24 ± 14.81 (12/12) 17.72 ± 6.56 (12/14) 17.63 ± 7.35 (11/14) 19.06 ± 12.60 (11/14) 15.7 ± 8.04 (10/14)

Detectable signal 10/12 11/12 11/14 9/14 9/14 9/14

Pathologic signal 1/10 0/11 1/11 0/9 2/9 1/9

N1 latency, ms 15.29 ± 3.07 15.78 ± 1.95 24.65 ± 2.23 23.92 ± 2.43 26.31 ± 3.20 26.08 ± 2.68

P1 latency, ms 21.57 ± 4.95 23.40 ± 3.10 29.71 ± 3.18 29.60 ± 2.69 31.07 ± 3.58 31.30 ± 2.87

N1P1 amplitude, μV 1.04 ± 1.49 1.22 ± 1.64 1.06 ± 0.62 1.33 ± 0.75 0.81 ± 0.47 1.08 ± 0.57

Abbreviations: CHEP = contact heat evoked potential; SSEP = somatosensory evoked potential.
Mean ± SD values are shown. Numbers in parentheses refer to the number of patients with detectable threshold/signals over the total numbered of measured patients.
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associated with WMA (lesion length: p = 0.014, R2 = 0.38,
95% CI −0.61 to −0.08 1/mm2; tissue bridges: p = 0.011,
R2 = 0.38, 95% CI 0.02–0.12 1/mm2) above the level of
injury (figure 3B).

The width of total midsagittal tissue bridges was associated
with DCA above the level of lesion (p = 0.019, R2 = 0.29, 95%
CI 0.25–2.39 1/mm2). Neither lesion size nor midsagittal
tissue bridges were associated with microstructural changes
above the level of lesion.

Relationship between remote
neurodegeneration and
neurophysiologic outcome
The size of the cross-sectional area of the dorsal columns
identified those patients with bilateral recordable SSEPs of
the dermatomes C6 and C8 (figure 4). This relationship
was not evident for the WMA and CHEPs. Higher AD
values within the dorsal column were associated with
shorter SSEP N1P1 latency at the C4 dermatome (p =
0.0024, R2 = 0.83, 95% CI: −0.00007 to −0.00001 10−3 ×
s2/mm2), corrected for age and lesion area. DTI metrics
within the spinothalamic tracts were not associated with
CHEPs recordings.

Relationship between remote
neurodegeneration and clinical outcome
GMA was associated with motor score (p = 0.007, R2 = 0.72,
95% CI 1.77–9.26) and pinprick score (p = 0.003, R2 = 0.58,
95% CI 3.48–13.90); VHA area was associated with motor
score (p = 0.001, R2 = 0.78, 95% CI 6.74–21.93); and DHA
was associated with pinprick score (p = 0.004, R2 = 0.57, 95%
CI 7.43–31.52) when corrected for lesion area and age
(figure 5A).

To quantify tract-specific associations with appropriate clini-
cal outcome, we used the extracted mean values of DTI in-
dexes within the regions of interest (i.e., corticospinal tract,
dorsal column, and spinothalamic tract). FA and RD within
corticospinal tract and the dorsal columns were associated
with SCIM score (corticospinal tract: FA: p = 0.002, R2 = 0.80,
95% CI 105.82–361.55; RD: p = 0.001, R2 = 0.83, 95%
CI −169829.70 to −60547.48; dorsal columns: FA: p = 0.002,
R2 = 0.80, 95% CI 106.07–341.42; RD: p = 0.003, R2 = 0.79,
95% CI −216944.1 to −60854.36) independently of lesion
extent and age (figure 5B). AD within the dorsal columns was
associated with GRASSP score independently of lesion extent
and age (p = 0.30, R2 = 0.60, 95% CI 40298.4–646999.7).

Figure 2 Microstructural changes above the level of injury

Voxel-wise analysis of microstructural changes above the level of injury in patients compared to healthy controls. First row shows the spinal cord template;
second row shows the whitematter atlas. Note the spatial overlap of the different diffusion tensor imagingmetrics showing that regions of decreased axonal
diffusivity (AD; e.g., axonal degeneration) but unaltered radial diffusivity (RD; e.g., no demyelination) lie mostly adjacent to the gray matter, where un-
myelinated propriospinal neurons are located. FA = fractional anisotropy. Reprinted from De Leener et al22 with permission from Elsevier.
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Discussion
This study shows the in vivo structure-function relationship
between the extent of tissue-specific cord pathology and
neurophysiologic and clinical impairment after traumatic
SCI. Crucially, we show that the magnitude of tissue damage
at the lesion epicenter is associated with the extent of
neurodegeneration above the level of lesion, which, in turn,
is associated with clinically relevant impairment and neu-
rophysiologic abnormalities. These findings allow us to in-
vestigate the extent of tissue-specific neurodegeneration
above the level of injury, its relationship to neuronal tissue
loss at the site of the lesion, and its effect on neurophysio-
logic and clinical outcome.

Tissue damage at the epicenter of a traumatic SCI results both
from the direct effect of the traumatic insult and from damage
to the vascular architecture and the ensuing ischemic effects
on the neuronal and glial cell populations within the acute

phase of injury.23 Remote from the epicenter of the lesion,
secondary neurodegeneration within white24,25 and gray
matter26 follows with a time lag and is driven by a multiphasic
response to cellular inflammation.27 While the extent of sec-
ondary remote atrophy has been quantified in vivo after
injury,2,28–30 we provide evidence that changes within both
gray and white matter contribute to cord atrophy above the
level of injury. This is in agreement with spinal gray matter
degeneration distant to the initial site of damage in patients
with multiple sclerosis31 and experimental SCI.32 Although
the relative decrease is larger within ventral and dorsal horns
(i.e., gray matter), the absolute magnitude of change is larger
within white matter, contributing more to the overall loss of
SCA by 20.2%.

We uncovered an in vivo relationship between neuronal tissue
loss (i.e., lesion severity) and remote tissue-specific cord pa-
thology above the level of injury. Moreover, we show an in-
terdependence of remote white and gray matter atrophy

Figure 3 Relationship between lesion severity and neurodegeneration above the level of injury

Themagnitude of tissue damage at the lesion site is associated with the amount of neurodegeneration above the level of injury. Lesion length andmidsagittal
tissue bridges are associated with (A) remote gray matter and (B) white matter atrophy.
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(i.e., DHA and DCA). Neurodegenerative changes within
gray matter above the level of injury are not likely to be
specific for any single pathologic process but rather are likely
to represent a combination of different pathologic mecha-
nisms taking place after SCI. Possible mechanisms involve
transsynaptic/transneuronal degeneration affecting the pro-
priospinal systems33,34 and motor neurons located in the
proximity of the spinal injury.35 Next to direct effects of
neurodegenerative processes, a reduction in muscle activity of
the upper extremity could lead to a reduction of neuronal
activity above the level of injury, which may translate into
shrinkage of the neuron soma size.

Furthermore, demyelination of corticospinal projections to
the dorsal horns,36 the expression of neurotrophic factors
from nonneuronal cells around neighboring degenerating
axons,36 growth factor dysregulation,37 and vascular remod-
eling38 could contribute to gray matter pathology. As white
matter damage is known to induce microglial activation
altering glutamate signaling, this process is thought to be
responsible for the dying back of axons and their parternal
neurons,39 which might be a shared underlying disease
mechanism. Thus, next to anterograde and retrograde de-
generation of white matter tracts30,40,41 the neuronal circuits
within the spinal cord far above the level of injury undergo
a temporary structured neurodegeneration.25

Within the microstructure of the atrophied white matter, we
found indications of both axonal degeneration and de-
myelination,42 represented by decreased FA and AD and in-
creased RD in the dorsolateral funiculus (e.g., containing the
lateral corticospinal and spinothalamic tracts) and posterior
funiculus (e.g., containing the dorsal columns). Within the
corticospinal tract and the dorsal column, leg function is
represented most laterally, whereas arm function is located

either medially (i.e., corticospinal tract) or centrally
(i.e., dorsal column). Our observed changes cover the entire
lateral corticospinal tract and the dorsal columns, indicating
neurodegenerative processes affecting axons that convey in-
formation relating to leg and arm function. Spatially over-
laying the different DTI metrics changes revealed that regions
showing decreased AD (e.g., axonal degeneration) but un-
altered RD (e.g., no demyelination) lie mostly adjacent to the
gray matter border. This region contains the fasciculi proprii
and contains mostly short, mainly unmyelinated propriospi-
nal neurons.43 This underlies our hypothesis that SCI might
lead to degeneration affecting interneurons within the spinal
cord.

Our findings complement previous studies in patients with
SCI 20,44–46 in that they now locate these changes to gray and
white matter rather than being nonspecific in terms of loca-
tion and tissue. Thus, our in vivo cord MRI measurements
demonstrate a combination of structural and functional pro-
cesses occurring over several segments above the level of in-
jury affecting both gray and white matter that is driven by
lesion severity.

We show that tract-specific microstructural and macro-
structural changes are associated with prolonged conduc-
tion of appropriate electrophysiologic recordings. This
association suggests a structure-function relationship be-
cause the amount of neurodegeneration was directly asso-
ciated with impairment of neurophysiologic information
flow. Because the DTI signal is sensitive to altered diffusion
properties occurring as a response to CNS damage
(i.e., demyelination/degeneration) and because neuronal
excitability is affected by morphometry of the axon and its
myelin, it seems plausible that neurophysiologic changes
might be reflected in remote macrostructural and

Figure 4 Relationship between neurodegeneration above the level of injury and electrophysiologic outcome

Patients were grouped into 3 cohorts: without or with unilateral (u) or bilateral (b) recordable dermatomal somatosensory-evoked potentials (SSEPs) at the
C4, C6, and C8 level. Patients with recordable dermatomal SSEPs showed a tendency toward larger dorsal column area above the level of injury.
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microstructural changes above the level of injury. Our
findings complement previous findings showing that the
topography and the excitability of corticomotor projections
were associated with cervical cord atrophy.2,47

Current assessments in patients with SCI lack sensitivity to
minimal changes in motor and sensory function48 in that
they cannot detect subtle changes due to remyelination and
axonal regeneration. Neuroimaging biomarkers have the
potential to track these subtle abnormalities because they
are sensitive to microstructural changes.1 In this study, the
magnitude of both remote macrostructural and micro-
structural changes within gray and white matter was sig-
nificantly associated with clinical impairment, independently
of lesion extent. In particular, the extent of remote ventral
horn atrophy was associated with motor impairment,
whereas dorsal horn atrophy was associated with sensory
disturbance. Microstructural tract-specific changes above

the level of injury were related to measures of functional
independence (i.e., SCIM) and strength, sensibility, and
prehension of the upper limbs (i.e., GRASSP). This suggests
that high-resolution MRI sequences applied above the level
of injury provide superior information on the patient’s
clinical status compared to standard clinical sequences at
the lesion site. In addition, the latter findings are striking in
that they suggest that remote neurodegeneration within
gray matter above the level of injury contributes, in addition
to white matter pathology, to motor and sensory impair-
ment. This multilevel interaction supports the view that SCI
leads to a cascade of neurodegenerative changes affecting
the entire spinal cord and brain.49 Characterizing these
secondary neurodegenerative events has the potential to
provide insights into new therapeutic interventions, in
addition to providing opportunities for monitoring treat-
ment effects in trials conducted in patients with acute and
chronic SCI.

Figure 5 Relationship between neurodegeneration above the level of injury and clinical outcome

Associations between (A) remote tract-specificmacrostructural MRI parameters above the level of injury and clinical impairment and (B) remote tract-specific
microstructural MRI indexes above the level of injury and clinical impairment. FA = fractional anisotropy; SCIM = Spinal Cord Independence Measure.
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This study had several limitations. Although our cohorts did
not show a significant age difference, the mean age was on
average higher in the patient group, which could potentially
affect the analysis. We therefore adjusted for age as a potential
confounder of no interest in all analyses. Furthermore, un-
biased voxel-based morphometry of DTI indexes in the spinal
cord has just started emerging,3 and the automated post-
processing methods for spatial normalization of the spinal
cord into common space are in their infancy. To increase the
reliability of our analysis, we therefore manually corrected the
spatial normalization to the template.

This study shows that the magnitude of dorsal and ventral
horn and white matter structural changes above the level of
injury is associated with appropriate clinical and neurophysi-
ologic impairment and is driven by lesion severity. These
findings suggest a combination of different pathologic pro-
cesses affecting both gray and white matter several segments
above the level of injury that are clinically eloquent. There-
fore, these neuroimaging biomarkers might serve as promising
surrogate markers for future clinical trials supplementing (or
complementing) clinical outcome measures.
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Study question
Does grey matter pathology above the level of injury con-
tribute to functional/sensorimotor impairments in patients
with spinal cord injury (SCI)?

Summary answer
The magnitude of tissue damage to both grey and white
matter at the lesion epicenter is associated with the extent
of neurodegeneration above the level of the lesion, which is
in turn associated with clinical impairments and neuro-
psychologic abnormalities, in SCI.

What is known and what this paper adds
White matter pathology within the spinal cord contributes
to sensorimotor impairments. This study provides evidence
that changes within grey matter—driven by the severity of
the lesion—also contribute to atrophy above the level of
injury and relate to clinical impairment, suggesting that
neuroimaging biomarkers can be used to supplement
clinical outcome measures in future clinical trials.

Participants and setting
The study included 17 patients with SCI (mean age: 48.7 ±
14.1 years) who had been admitted to University Hospital
Balgrist (Zurich, Switzerland) and 21 healthy controls
(mean age: 41.7 ± 11.3 years) recruited from among the
local population. Inclusion criteria for patients with SCI
were as follows: traumatic cervical SCI, absence of other
neurologic or psychologic disorders, age 18–70 years,
absence of contraindications for MRI, and absence of
pregnancy.

Design, size, and duration
All patients underwent clinical assessments for functional/
neurologic impairment (e.g., Spinal Cord Independence
Measure [SCIM], the International Standards for Neuro-
logical Classification of Spinal Cord Injury [ISNCSCI],
Graded Redefined Assessment of Strength, Sensibility, and
Prehension [GRASSP], as well as neurophysiologic assess-
ments such as Contact heat-evoked potentials [CHEPs] and
somatosensory-evoked potentials [SSEPs]). Contact heat-
evoked potentials (CHEPs), somatosensory-evoked poten-
tials (SSEPs), and imaging findings were examined an
average of 6.7 ± 7.8 years after injury.

Main results and the role of chance
Greater lesion area and length were associated with greater
decreases in spinal cord area above the level of injury (p =
0.048 and p = 0.006, respectively). Tissue-specific neuro-
degeneration was associated with electrophysiologic abnor-
malities. Dorsal and ventral horn atrophy were associated
with sensory and motor outcomes, respectively. White
matter integrity was associated with functional independence.

Bias, confounding, andother reasons for caution
Mean age was higher in the patient group, and manual cor-
rection was performed for spatial normalization.

Generalizability to other populations
The results may be generalizable to nontraumatic SCI forms.
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